Artificial Intelligence and Causal Inference

459,00 RON
+ 65,49 RON Livrare

Artificial Intelligence and Causal Inference

  • Marcă: Unbranded
Vândut de:

Artificial Intelligence and Causal Inference

  • Marcă: Unbranded

459,00 RON

În stoc
+ 65,49 RON Livrare

Politica de retur pe 14 zile

Vândut de:

459,00 RON

În stoc
+ 65,49 RON Livrare

Politica de retur pe 14 zile

Metode de plată:

Descriere

Artificial Intelligence and Causal Inference

Artificial Intelligence and Causal Inference address the recent development of relationships between artificial intelligence (AI) and causal inference. Despite significant progress in AI a great challenge in AI development we are still facing is to understand mechanism underlying intelligence including reasoning planning and imagination. Understanding transfer and generalization are major principles that give rise intelligence. One of a key component for understanding is causal inference. Causal inference includes intervention domain shift learning temporal structure and counterfactual thinking as major concepts to understand causation and reasoning. Unfortunately these essential components of the causality are often overlooked by machine learning which leads to some failure of the deep learning. AI and causal inference involve (1) using AI techniques as major tools for causal analysis and (2) applying the causal concepts and causal analysis methods to solving AI problems. The purpose of this book is to fill the gap between the AI and modern causal analysis for further facilitating the AI revolution. This book is ideal for graduate students and researchers in AI data science causal inference statistics genomics bioinformatics and precision medicine. Key Features: Cover three types of neural networks formulate deep learning as an optimal control problem and use Pontryaginâs Maximum Principle for network training. Deep learning for nonlinear mediation and instrumental variable causal analysis. Construction of causal networks is formulated as a continuous optimization problem. Transformer and attention are used to encode-decode graphics. RL is used to infer large causal networks. Use VAE GAN neural differential equations recurrent neural network (RNN) and RL to estimate counterfactual outcomes. AI-based methods for estimation of individualized treatment effect in the presence of network interference. . Language: English
  • Marcă: Unbranded
  • Categorie: Calcul și internet
  • Artist: Momiao Xiong
  • Limbă: English
  • Format: Paperback
  • Data publicării: 2024/05/27
  • Editor / Etichetă: CRC Press
  • ID Fruugo: 337554568-741192544
  • ISBN: 9781032193281

Livrări şi Returnări

Expediat în 4 zile

  • STANDARD: 65,49 RON - Livrare între mie. 18 februarie 2026–lun. 23 februarie 2026

Livrare de la Regatul Unit.

Facem tot ce ne stă în putinţă să ne asigurăm că produsele comandate de dumneavoastră vă sunt livrate în întregime şi conform specificaţiilor. Cu toate acestea, dacă primiţi o comandă incompletă sau articole diferite de cele comandate, sau aveţi alt motiv pentru care nu sunteţi mulţumit de comandă, puteţi returna comanda sau orice produse incluse în comandă şi primiţi o rambursare completă pentru articole. Vizualizaţi întreaga politică de returnare