Mixed Effects Models for Complex Data

599,00 RON
+ 33,49 RON Livrare

Mixed Effects Models for Complex Data

  • Marcă: Unbranded
Vândut de:

Mixed Effects Models for Complex Data

  • Marcă: Unbranded

599,00 RON

În stoc
+ 33,49 RON Livrare

Politica de retur pe 14 zile

Vândut de:

599,00 RON

În stoc
+ 33,49 RON Livrare

Politica de retur pe 14 zile

Metode de plată:

Descriere

Mixed Effects Models for Complex Data

Although standard mixed effects models are useful in a range of studies other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts missing data measurement errors censoring and outliers. For each class of mixed effects model the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data the book introduces linear mixed effects (LME) models generalized linear mixed models (GLMMs) nonlinear mixed effects (NLME) models and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values measurement errors censoring and outliers. Self-contained coverage of specific topicsSubsequent chapters delve more deeply into missing data problems covariate measurement errors and censored responses in mixed effects models. Focusing on incomplete data the book also covers survival and frailty models joint models of survival and longitudinal data robust methods for mixed effects models marginal generalized estimating equation (GEE) models for longitudinal or clustered data and Bayesian methods for mixed effects models. Background materialIn the appendix the author provides background information such as likelihood theory the Gibbs sampler rejection and importance sampling methods numerical integration methods optimization methods bootstrap and matrix algebra. Failure to properly address missing data measurement errors and other issues in statistical analyses can lead . Language: English
  • Marcă: Unbranded
  • Categorie: Educație
  • Artist: Lang Wu
  • Limbă: English
  • Număr de pagini: 440
  • Format: Paperback
  • Data publicării: 2019/09/05
  • Editor / Etichetă: CRC Press
  • ID Fruugo: 337358561-740984993
  • ISBN: 9780367384913

Livrări şi Returnări

Expediat în 6 zile

  • STANDARD: 33,49 RON - Livrare între mie. 14 ianuarie 2026–lun. 19 ianuarie 2026

Livrare de la Regatul Unit.

Facem tot ce ne stă în putinţă să ne asigurăm că produsele comandate de dumneavoastră vă sunt livrate în întregime şi conform specificaţiilor. Cu toate acestea, dacă primiţi o comandă incompletă sau articole diferite de cele comandate, sau aveţi alt motiv pentru care nu sunteţi mulţumit de comandă, puteţi returna comanda sau orice produse incluse în comandă şi primiţi o rambursare completă pentru articole. Vizualizaţi întreaga politică de returnare