Expert Systems and Probabilistic Network Models

774,00 RON
+ 28,49 RON Livrare

Expert Systems and Probabilistic Network Models

  • Marcă: Unbranded
Vândut de:

Expert Systems and Probabilistic Network Models

  • Marcă: Unbranded

774,00 RON

În stoc
+ 28,49 RON Livrare

Politica de retur pe 14 zile

Vândut de:

774,00 RON

În stoc
+ 28,49 RON Livrare

Politica de retur pe 14 zile

Metode de plată:

Descriere

Expert Systems and Probabilistic Network Models

Preface. - 1 Introduction. - 1. 1 Introduction. - 1. 2 What Is an Expert System?. - 1. 3 Motivating Examples. - 1. 4 Why Expert Systems?. - 1. 5 Types of Expert System. - 1. 6 Components of an Expert System. - 1. 7 Developing an Expert System. - 1. 8 Other Areas of AI. - 1. 9 Concluding Remarks. - 2 Rule-Based Expert Systems. - 2. 1 Introduction. - 2. 2 The Knowledge Base. - 2. 3 The Inference Engine. - 2. 4 Coherence Control. - 2. 5 Explaining Conclusions. - 2. 6 Some Applications. - 2. 7 Introducing Uncertainty. - Exercises. - 3 Probabilistic Expert Systems. - 3. 1 Introduction. - 3. 2 Some Concepts in Probability Theory. - 3. 3 Generalized Rules. - 3. 4 Introducing Probabilistic Expert Systems. - 3. 5 The Knowledge Base. - 3. 6 The Inference Engine. - 3. 7 Coherence Control. - 3. 8 Comparing Rule-Based and Probabilistic Expert Systems. - Exercises. - 4 Some Concepts of Graphs. - 4. 1 Introduction. - 4. 2 Basic Concepts and Definitions. - 4. 3 Characteristics of Undirected Graphs. - 4. 4 Characteristics of Directed Graphs. - 4. 5 Triangulated Graphs. - 4. 6 Cluster Graphs. - 4. 7 Representation of Graphs. - 4. 8 Some Useful Graph Algorithms. - Exercises. - 5 Building Probabilistic Models. - 5. 1 Introduction. - 5. 2 Graph Separation. - 5. 3 Some Properties of Conditional Independence. - 5. 4Special Types of Input Lists. - 5. 5 Factorizations of the JPD. - 5. 6 Constructing the JPD. - Appendix to Chapter 5. - Exercises. - 6 Graphically Specified Models. - 6. 1 Introduction. - 6. 2 Some Definitions and Questions. - 6. 3 Undirected Graph Dependency Models. - 6. 4 Directed Graph Dependency Models. - 6. 5 Independence Equivalent Graphical Models. - 6. 6 Expressiveness of Graphical Models. - Exercises. - 7 Extending Graphically Specified Models. - 7. 1 Introduction. - 7. 2 Models Specified by Multiple Graphs. - 7. 3 Models Specified by Input Lists. - 7. 4 Multifactorized Probabilistic Models. - 7. 5 Multifactorized Multinomial Models. - 7. 6 Multifactorized Normal Models. - 7. 7 Conditionally Specified Probabilistic Models. - Exercises. - 8 Exact Propagation in Probabilistic Network Models. - 8. 1 Introduction. - 8. 2 Propagation of Evidence. - 8. 3 Propagation in Polytrees. - 8. 4 Propagation in Multiply-Connected Networks. - 8. 5 Conditioning Method. - 8. 6 Clustering Methods. - 8. 7 Propagation Using Join Trees. - 8. 8 Goal-Oriented Propagation. - 8. 9 Exact Propagation in Gaussian Networks. - Exercises. - 9 Approximate Propagation Methods. - 9. 1 Introduction. - 9. 2 Intuitive Basis of Simulation Methods. - 9. 3 General Frame for Simulation Methods. - 9. 4 Acceptance-Reject ion Sampling Method. - 9. 5 Uniform Sampling Method. - 9. 6 The Likelihood Weighing Sampling Method. - 9. 7 Backward-Forward Sampling Method. - 9. 8 Markov Sampling Method. - 9. 9 Systematic Sampling Method. - 9. 10 Maximum Probability Search Method. - 9. 11 Complexity Analysis. - Exercises. - 10 Symbolic Propagation of Evidence. - 10. 1 Introduction. - 10. 2 Notation and Basic Framework. - 10. 3 Automatic Generation of Symbolic Code. - 10. 4 Algebraic Structure of Probabilities. - 10. 5 Symbolic Propagation Through Numeric Computations. - 10. 6 Goal-Oriented Symbolic Propagation. - 10. 7 Symbolic Treatment of Random Evidence. - 10. 8 Sensitivity Analysis. - 10. 9 Symbolic Propagation in Gaussian Bayesian Networks. - Exercises. - 11 Learning Bayesian Networks. - 11. 1 Introduction. - 11. 2 Measuring the Quality of a Bayesian Network Model. - 11. 3 Bayesian Quality Measures. - 11. 4 Bayesian Measures for Multinomial Networks. - 11. 5 Bayesian Measures for Multinormal Networks. - 11. 6 Minimum Description Length Measures. - 11. 7 Information Measures. - 11. 8 Further Analyses of Quality Measures. - 11. 9 Bayesian Network Search Algorithms. - 11. 10 The Case of Incomplete Data. - Appendix to Chapter 11: Bayesian Statistics. - Exercises. - 12 Case Studies. - 12. 1 Introduction. - 12. 2 Pressure Tank System. - 12. 3 Power Distribution System. - 12. 4 Damage of Concrete Structures. - 12. 5 Damage of Concrete Structures: The Gaussian Model. - Exercises. - List of Notation. - References. Language: English
  • Marcă: Unbranded
  • Categorie: Calcul și internet
  • Artist: Enrique Castillo
  • Limbă: English
  • Număr de pagini: 605
  • Format: Paperback
  • Data publicării: 2011/09/15
  • Editor / Etichetă: Springer
  • ID Fruugo: 337901221-741560605
  • ISBN: 9781461274810

Livrări şi Returnări

Expediat în 4 zile

  • STANDARD: 28,49 RON - Livrare între lun. 09 februarie 2026–joi 12 februarie 2026

Livrare de la Regatul Unit.

Facem tot ce ne stă în putinţă să ne asigurăm că produsele comandate de dumneavoastră vă sunt livrate în întregime şi conform specificaţiilor. Cu toate acestea, dacă primiţi o comandă incompletă sau articole diferite de cele comandate, sau aveţi alt motiv pentru care nu sunteţi mulţumit de comandă, puteţi returna comanda sau orice produse incluse în comandă şi primiţi o rambursare completă pentru articole. Vizualizaţi întreaga politică de returnare